Seismic Anisotropy

Introduction
- Shape Preferred Orientation
- Lattice Preferred Orientation

Theory
- Elastic constants c_{ijkl} in isotropic and anisotropic media
- Transverse isotropy
- Anisotropic elasticity
- Shear wave splitting

Fast direction
Splitting time

Observations and Implications
- Crustal anisotropy (SPO)
- Anisotropy in the lithosphere and asthenosphere (LPO)
- Anisotropy of mineral crystals
- Anisotropy of mantle flow

Mid mantle (P660s and SKS)

Inner core anisotropy
- hcp iron (ε phase)
- Aggregation mechanisms

Seismic velocity function of propagation/polarization direction.
- Anisotropic Minerals (Olivine)
- Lattice Preferred Orientation
- Deformation, Flow

Shear wave splitting (birefringence)
- Fast polarization direction follows flow/shear direction.
- Delay time is a measure of layer thickness.

Shape Preferred Orientation

Lattice Preferred Orientation

Seismic Waves in an Anisotropic Medium

Theory

Independent elastic constants
$3\times3\times3=27$

$6\times6=36$

$U=1/2(C_{ijkl} \varepsilon_{ik} \varepsilon_{jl})$

$(36-6)/2+6=21$
Transverse Isotropy

Azimuthal Anisotropy

Measurements of Seismic Anisotropy

Crustal Anisotropy (SPO)

Example of Shear-Wave Splitting

Anisotropy in the Lithosphere and Asthenosphere (LPO): Anisotropy of Olivine Crystals
LPO and Creeps

- Dislocation creep
 - Line defects
 - High stress and/or large grain size
 - Leads to an alignment of mineral grains. The resulting aggregate is seismically anisotropic

- Diffusion creep
 - Point defects
 - Lower pressure and/or small grain size
 - Leads to a random distribution of mineral grain orientations, resulting in an effectively isotropic aggregate

Seismic Anisotropy and Mantle Flow

- Lithosphere
 - Frozen LPO
 - Past plate motion

- Asthenosphere
 - LPO
 - Present plate motion

Anisotropy in the Lithosphere and Asthenosphere (LPO): Alignment of Crystals

SKS Splitting in the Eastern US

Anisotropy in the Mid-Mantle

Anisotropy in the D" Layer
IC composition and physical state

- **Composition:**
 - Fe
 - Light elements: Ni, S, O, Si
 - Radiogenic elements?
- **Physical state:**
 - Crystal structure:
 - Body-centered cubic (b.c.c)
 - Face-centered cubic (f.c.c)
 - Hexagon closed packet (h.c.p)
 - Temperature
- **Elastic properties:**
 - Seismic wave velocity
 - Anisotropy

Fe crystalline forms

Stixrude and Cohen, 1994

Anisotropic IC Growth

- Flow induced preferred orientation
 - Theory of Kamb 1959
 - Elastic constants of Steinle-Neumann et al.
- Strongest signal along rotation axis

Effects of Magnetic Fields

- Karato (Nature, 1993)
 - Argues that anisotropic magnetic susceptibility will cause Fe to become aligned as it freezes at the ICB
- Karato (Nature, 1999)
 - Argues that Maxwell stresses will align Fe crystals
 - Relies on magnetic pressure perturbation from IC toroidal B
 - How strong is B_t?
 - IC density stratification?
- Buffett and Wenk (Nature 413: 60–63, 2001)
 - How strong is B_t?
 - What is the IC viscosity?