Université Paris Diderot – Paris 7 UFR des Sciences de la Terre, de l'environnement et des planètes L3 Géosciences fondamentales

Février 2008

Troisième partie : applications

VII. Bilan radiatif et bilan d'énergie à la surface de la TerreVIII. AltimétrieIX. Composition minéralogique et biochimiqueX. Exobiologie

Conclusion Références Principales revues Adresses Web utiles

VII. Bilan radiatif et bilan d'énergie à la surface de la Terre

4

Rayonnement dans les courtes longueurs d'onde

Transmittance des nuages

Nuages hauts	Transmittance	Nuages moyens	Transmittance	Nuages bas	Transmittance
cirrus	0.83	altocumulus	0.50	stratocumulus	0.34
cirrostratus	0.80	altostratus	0.41	stratus	0.25
				nimbostratus	0.18
				brouillard	0.17

http://eosweb.larc.nasa.gov/GUIDE/dataset_documents/srb.html

<u>Albédo</u>

Rayonnement atmosphérique dans les grandes longueurs d'onde

$$R_{L\downarrow} = \varepsilon_a \, \sigma \, T_a^4$$

http://geography.uoregon.edu/envchange/clim_animations/index.html

http://geography.uoregon.edu/envchange/clim_animations/index.html

Rayonnement terrestre dans les grandes longueurs d'onde

$$R_{L\uparrow} = \varepsilon \, \sigma \, T_s^4$$

Moderate-resolution Imaging Spectroradiometer (MODIS) - Mai 2001

http://science.hq.nasa.gov/oceans/physical/SST.html

Rayonnement net

$$R_{N} = R_{glob} \left(1 - \alpha \right) + R_{L\downarrow} - R_{L\uparrow}$$

http://geography.uoregon.edu/envchange/clim_animations/index.html

Bilan d'énergie

$$R_N = LE + G + H + s$$

 R_N = rayonnement net LE = flux de chaleur latente dans l'air

= chaleur latente de vaporisation de l'eau (2454 kJ kg⁻¹) × masse d'eau évaporée par unité de temps

- H = flux de chaleur sensible
- G =flux de chaleur dans le sol
- S = photosynthèse

JOUR

Variations journalières sur un sol nu du nord de l'Espagne

Source : Daniel Richard (IPGP)

http://geography.uoregon.edu/envchange/clim_animations/index.html

http://geography.uoregon.edu/envchange/clim_animations/index.html

Couplage des bilans

flux solaire moyen (moyenne globale et annuelle) à la limite de l'atmosphère : 342 W m⁻²

J.T. Kiehl, K.E. Trenberth, 1997, Earth's annual flobal mean energy budget, *Bulletin of the American Meteorological Society*, 78(2):197-208.

VIII. Altimétrie

C

Ð

D.E. Smith, M.T. Zuber, S.C. Solomon, R.J. Phillips, J.W. Head, J.B. Garvin, W.B. Banerdt, D.O. Muhleman, G.H. Pettengill, G.A. Neumann, F.G. Lemoine, J.B. Abshire, O. Aharonson, C.D. Brown, S.A. Hauck, A.B. Ivanov, P.J. McGovern, H.J. Zwally & T.C. Duxbury, 1999, The Global Topography of Mars and Implications for Surface Evolution, *Science*, 284(5419):1495-1503, 28 May 1999

Emetteur

- laser Nd:Yag pulsé
- longueur d'onde : 1064 nm
- fréquence de pulsation : 100-500 Hz <u>Récepteur</u>
- miroir parabolique : 20 cm
- détecteur Si:APD
- Field Of View : 8 mrad

Résolution

- précision verticale relative sur le couvert : 30 cm
- précision verticale relative sur le sol : 3 cm
- précision verticale absolue : 0.15 m sur sol nu
- taille du pixel : 1-80 m (25 m en moyenne)
- champ de visée horizontal à 8 km : 0.9 km

Altimétrie laser grâce au LIDAR aéroporté LVIS (*Laser* Vegetation Imaging Sensor)

Restitution de la topographie du sol et de la structure verticale et horizontale du couvert végétal avec une précision inégalée à ce jour

J.B. Blair, D.L. Rabine & M.A. Hofton, 1999, The Laser Vegetation Imaging Sensor: a Medium-Altitude, Digitisation-only, Airborne Laser Altimeter for Mapping Vegetation and Topography, *ISPRS Journal of Photogrammetry & Remote Sensing*, 54 1999 115–122

LIDAR-hauteur du sol

InSAR bande P

LIDAR-hauteur du couvert

InSAR bande X

LIDAR = LIght Detection And Ranging ($\lambda = 1064$ nm) InSAR = Interferometric Synthetic Aperture Radar (bande X : $\lambda = 3$ cm / bande P : $\lambda = 72$ cm)

H.E. Andersen, R.J. McGaughey, W.W. Carson, S.E. Reutebuch, B. Mercer & J. Allan, 2003, A Comparison of Forest Canopy Models Derived from LiDAR and InSAR Data in a Pacific NorthWest Conifer Forest, in Proceedings ISPRS Workshop 3-D reconstruction from airborne laserscanner and InSAR data, Dresden, Germany, 8-10 October 2003

Les courtes longueurs d'onde (bande X/C) répondent principalement à la surface du couvert végétal (feuilles)

Les moyennes longueurs d'onde (bande C/L) répondent principalement à l'intérieur du couvert végétal (branches et troncs)

Les grandes longueurs d'onde (bande L/P) pénètrent jusqu'à la surface du couvert végétal (sol)

InSAR bande P

Altimètre LiDAR et géomorphologie

s - scarp ls - landslide tf - tideflat otf - old tideflat gf - fluted glaciated surface gbr - glaciated bedrock surface

R.A. Haugerud, D.J. Harding, S.Y. Johnson, J.L. Harless, C.S. Weaver & B.L. Sherrod, 2004, High-Resolution Lidar Topography of the Puget Lowland, Washington - A Bonanza for Earth Science, *GSA Today*, 13(6):4–10

Altimètre LiDAR et prévention des risques naturels dans les Alpes

h = hauteur maximum de la falaise
l = longueur de la zone boisée
d = distance d'entrée dans la zone boisée
α = pente moyenne

Source : Luuk Dorren (CEMAGREF Grenoble) http://www.rockfor.net/

Altimètre LiDAR et risque hydrologique dans le Val de Loire

<u>Localisation</u> : la Loire, 1870 km² <u>Objectifs</u> :

- cartographie des zones innondables
- amélioration des modèles hydrauliques
- contrôle des zones submergées
- Aquisition : printemps 2002 & 2003

Fréquence d'impulsion : 25 000 Hz Largeur de bande : 680 m Altitude de vol : 950 m Distance entre bandes : 500 m Chevauchement des bandes : 180 m Vitesse de l'avion : 75 m/s Taille du faisceau au sol : 25 cm² Résultat : 1 point / 4 m² sous végétation

Source : Laurent Coudercy (DIREN Centre)

Altimètre radar et hauteur des océans

http://www.jason.oceanobs.com/

Novembre 1997 : El Niño

Interférométrie radar et déformations de la croute terrestre

locity

10 k

ee.

