

Operations at Ketzin

Motivated Colleagues

Frontiers in Geosciences 2007-2008, IPGP Paris, 19.03.2008

GFZ

POTSDAM a Helmholtz Centre

Coring – Geological Profile

Norden et al. 2007

Frontiers in Geosciences 2007-2008, IPGP Paris, 19.03.2008

CO,SINK

- Caprock (Weser and Arnstadt Fm.):
 - Playa-type mudstones (210 m thick)
 - Couplets of mudstone (0.05–1.5 m thick) and dolomite beds (0.01 and 0.5 m thick)
 - Couplets stacked in groups of two to seven
 - Basin wide uniformity

GFZ

POTSDAM

a Helmholtz Centre

- Reservoir rock (Stuttgart Fm.):
 - Sandstones consist of varying amounts of quartz, feldspar, and rock fragments (graywacke)
 - Fine to medium-grained, well sorted, and weakly cemented by silicates / clay / anhydrite

- Sensors placed behind the well casing
- Fully cemented in the annular space between casing and rock formation
- Special protector systems help to avoid damaging the fiber optic cables and sensors
- This concept has a number of advantages:
 - 1. High data quality due to small distance between the sensors and the target (injected CO₂)
 - 2. Same coupling conditions in all repeat measurements (time-lapse measurements)
 - 3. High repetition rate

GFZ POTSDAM a Helmholtz Centre

Non-Permanent Monitoring

CO,SINK

• 3D seismics:

GFZ

POTSDAM a Helmholtz Centre

- sources and receivers placed at surface
- low resolution but reservoir coverage
- sensitive to low CO₂ (up to 10 %)
- low repetition rate due to costs (maximum once per year)
- Cross hole seismics and surface to borehole seismics:
 - sources and receivers placed in boreholes (x-hole)
 - source at surface, receivers moving in boreholes (VSP)
 - source at surface (moving), receivers in boreholes (MSP)
 - higher resolution than 3D seismics
 - may interfere with other measurements in well
 - cross-hole tomography and caprock integrity

Geochemistry

Frontiers in Geosciences 2007-2008, IPGP Paris, 19.03.2008

Zimmer 2007

Mud Gas Monitoring while Drilling mud gas extraction gas analysis in field laboratory

CO,SINK

Gas Discharged from Cores

Frontiers in Geosciences 2007-2008, IPGP Paris, 19.03.2008

Zimmer et al. 2007

Removing Safety Valve

Frontiers in Geosciences 2007-2008, IPGP Paris, 19.03.2008

Particle Sampling

Specialist for on site analytic (Dargel, RWE Dea)

→ Stop of lifting after production <u>of 50m³ ???</u>

→ Fluid looks

 $(5m^3)$

already clean

after 1 h lifting

Microfiltration (1.2 μm)

Tyler and Finley RJ 1991

Modelling of CO₂ Injection

One example of a scenario of gas

The CO₂-Storage Team – 2006

Results of simplified numerical model:

> 1000 articles and around 40 TV-stories

Conclusions

- Project start: 1st April 2004
- Permissions (> 20) applied for and collected
- Successful completion of 3 wells (1 IW, 2 OW)
- Delay around 1 year (only)
- Injector stimulated
- Baseline measurements completed
- • •

Frontiers in Geosciences 2007-2008, IPGP Paris, 19.03.2008

Wissenschaftspark (scientific park) Albert-Einstein - Telegrafenberg

Thank you for your attention

Frontiers in Geosciences 2007-2008, IPGP Paris, 19.03.2008

POTSDAM a Helmholtz Centre

References

- Beutler G, Hauschke N, Nitsch E (1999) Faziesentwicklung des Keupers im Germanischen Becken, in Hauschke N and Wilde V (eds.) Trias, eine ganz andere Welt: München, Verlag Dr. Friedrich Pfeil, p. 129–173
- Bielinski A, Kopp A, Schütt H, Class H (2008) Monitoring of CO2 plumes during storage in geological formations using temperature signals: numerical investigation. International Journal of Greenhouse Gas Control (accepted for publication)
- Förster A, Norden B, Zinck-Jørgenson, Frykman P, Kulenkampff J, Spangenberg E, Erzinger J, Zimmer M, Kopp J, Borm G, Juhlin C, Cosma C-G, Hurter S (2006) Baseline characterization of the CO2SINK geological storage site at Ketzin, Germany. Environmental Geosciences 13(3): 145-161
- Frykman P, Zink-Jørgensen K, Bech N (2007) Geostatistical modelling for decisions in a CO2 storage experimental site. The Universities Forum on Reservoir Description and Simulation (UFORDS). 2-6 September, 2007. Scarborough, England. Heriot-Watt University, Edinburgh. Abstract volume, 1 p
- Tyler N, Finley RJ (1991) Architectural controls on the recovery of hydrocarbons from sandstone reservoirs. In: A.D. Miall and N. Tyler (Editors), The three-dimensional facies architecture of terrigenous clastic sediments and its implications for hydrocarbon discovery and recovery. Concepts in Sedimentology and Paleontology. SEPM (Society for Sedimentary Geology), Tulsa, OK, United States, pp. 1-5