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Unit of stress:
1 kilopascal kPa
=1 kN/m?

(Kilo Newtons per square
meter)

Slightly above-average
American male




Unit weights of materials (per m?)

Water, y,, = gp,, = 9.81 kN/m3

V= volume solids

Solid rock, y, = 26.0 kN/m3 V= V?lume voids
Porosity:

n=V /(V +V)

Soil-made up of solid grains and pores

air—— Dry soil, idealized:
i Y4= 7Y, V/(V+V,) = 7,(1-n) = 15-20 kN/m?

water— Saturated soil:
(e Yare T Ve T VIV V) =20-23 kKN/m?

Infinite slope equation
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F_ C'+(7/dZd +7/satZw _7/WZW)COSﬁtan¢
(ded + ysatzw)Sinﬂ

Y,, = unit weight of water (9.81 kN/m?)

Y, = dry unit weight of soil (15-20 kN/m?)
Y. = Saturated unit weight of soil (20-23 kN/m?)

Note: the soil column is assumed
to be 1m wide perpendicular to paper

Assume no cohesion (c=0) and full saturation, z, = 0:

po 20w =y )cosfang . ang o cang
Y.z, sinp V., tanpf tan S

Assume no cohesion (¢=0) and a dry slope, z = 0:

_ tang

tan B

F

Conclusion: a dry cohesionless slope will be at the point of
failure when B=¢ (""angle of repose'). However, a saturated
slope with parallel seepage will be about half as steep.




Role of cohesion:

Assume fully saturated
slope, parallel seepage
z=z,~1.5m

¢ =32°

B c+(y,z, +y..2, —V.,Z,)cosBtan ¢ s0
r,z, +7..2,)sinpB B

F

Solve equation to find ¢’ when
F=1.0 (at failure)

Beta (degrees)

Conclusion: 3 -
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Slopes in mountainous 012345678910
regions require cohesion © kP

Undrained (short term) slope failure in clay

B c+(y,z, + 7.2, —V.Z,)cos ftan g
(ydzd + }/satZw)Sinﬂ

F

.(P, = 0
*S, instead of ¢’
*Slope fully saturated (by capillary action) , Z = Z,

S

(ysatz) sin IB z

clay

Undrained failures in clay
tend to be rotational




Shallow landslide susceptibility

G+ Gy +eostalgn +9(0 = D)+ (a1 ) Dutan g’

FS

i
o, sinacosajge + (0 — Do) + D]
e # i
- -
EE where FS = factor of safety

aﬁ:" d:? -\5\" o = slope of the ground surface. degrees
If.i‘ - I = total seil thickness, ft
I 4 D, = saturated soil thickness, ft

= tree root strength expressed as cohesion, psf

qo = tree surcharge, psf

' = soil cohesion, psl

= effective internal angle of friction, degress
74 = dry soii unit weight., pef

7 = moist seil unit weight, pel

“ane = saturated soil umit weight, pef

Tw = waler unit weight, pef

(Hammond et al., 1992)

Program LISA (US Forest Service):
apply Infinite Slope Equation on an
areal basis, in a probabilistic
manner, map “probability of

failure” (or Factor of Safety) ’—'

frequency

&, degrees 9

Influence of logging on slope stability

.
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Debris slides/avalanches from forest slopes
(selected fom NCAS] Technical Bulletin No, 456, New York., 1985)
Location | Forested r, Clearcut | Road right-of-way
["Events Volume | Events | Vorlmne Events [ Volume
N per ke y i knt iperda’y | o ke y perkm’y | mlkn'y
Southern Coast, B.C. 0.004 [} T0.02 ] 0.08 82 N
Mapleton District, Orggon 053 32 ~Toss [a2 37 T
H.J, Andrews Ex. Forest, Oregon® 0.1 [ 2134 17 T 151 128000
Alder Ck. Dregon 0.02 46 027 [ g [83 15764
Amplification ratios [1x L ix My Towsx [ Tx-d15x 26x-343%

* December 1964, 50 vear storm




Subjective slope stability mapping

SOIL DRAINAGE CLASSES SLOPE CLASSES
r__| rapidly drained i | imperfectly drained Class o, degrees
w__| well drained p | poorly drained 1 05 03|
m_| moderately well drained v_| very poorly drained
— - 2 6-27 4-15
Where two drainage classes are shown: if the symbols are -
separated by a comma, e.g., "w,i", then no intermediate 3 28-49 16-26
classes are present; if the symbols are separated by a dash, 4 50-70 27-35
e.q., "w-i*, then all intermediate classes are present. 5 =70 =35
CRITERIA FOR SLOPE STABILITY INTERPRETATIONS
Potential Slope Daminant Material and Dominant Active Soil Drainage Slopa
Stability and Slope Landiorms Texture Processes Morphology
Surface Erosion Class®
Classes
1and2 FG1, FGu; Cf; Ft [+ none poorly slopes with
| I I O — none drained and irregular or
1842 mixed Mv, Mb; Cv: B %5, 5; 850 wel soils are benched
2 My, Mb .55 none relatively topography
" JUORIRE IR none susceplible; | contralled by
— 2and 3 oL FO. R 50, Q) units with bedrock are
3 My, Mb; Cv $8; ¢ none slopes within relatively
m . none Jara®atan | stable; units
4 Ca, Ck, R, FG Sr, 60 upper class with slopes
boundary closetoa
v 4and 5 My, Mb, Cv, Cb all -V, -Rb” may be lower class
................. assigned to boundary
4 and 5 Rk, As the next may be
highest class | assigned to
v any gradient M, C. R all -F, -Rd", -Rs” the next
. lowest class.

(J. Ryder, Vancouver, 1998)

Figure 5-2: Terrain Stability (Perspective)
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Deep-seated landslides: Method of Slices

0 100 200 300 400 500

General method:
1) Work out the equilibrium of each slice

2) Calculate the equilibrium of the slice assembly
3) Results depend on assumptions regarding the
interslice forces E and X

Available equations
1) Vertical equilibrium of a single slice (n equations)

W=Ncosf+Tsin f+VX

2) Mohr-Coulomb strength (n equations)

A tang
T= F +(N —uL)T “Mobilized strength”

3) Horizontal force equilibrium for the slice assembly (1 equation)
ZNSinﬂ—ZTcosﬂzo

4) Moment equilibrium for the slice assembly Interslice forces cancel out
(1 equation) in these equations

ZWFW_ZN’”N_ZT”T =0 r’s are radii of rotation
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Bishop’s Simplified Method:

Fredlund Krahn (1978) Modification for Non-circular surfaces

REFERENCE AXIS

Add moment of the normal forces

Possible solutions

For n slices, we have the following unknowns:

n N forces + n T forces + n AX + n AE +1F =4n+1 unknowns

Bishop’s simplified method:
1) assume AX = 0 (no shear between slices)

2) use only Equations 1,2 and 4 (neglect horizontal force
equilibrium)— AE not needed, problem determinate

3) Good for circular sliding surfaces, conservative for others

4) Not good if large horizontal external forces involved




Janbu simplified method: More solutions

1) assume AX = 0 (no shear between slices)
2) use only Equations 1,2 and 3 (neglect moment equilibrium)

3) Good for shallow sliding surfaces, tends to be more conservative
than Bishop (correction needed)

Spencer’s method:
1) assume AX/AE = constant (constant interslice friction)

2) Must add another equation (horizontal force equilibrium on each
slice). Use all five equations (“rigorous solution”)

3) Requires iterative solution, may not converge

Morgenstern-Price method:

1) assume AX/AE varies according to a prescribed function
(“rigorous solution”)

2) Requires iterative solution, may not converge 17
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Sarma method w

Force polygon

o/F

1) Divide sliding body into blocks

2) Assume that a constant friction angle, ¢,/F will be mobilized on
all block interfaces

3) Solve graphically from first block to last. Will only work out for
one specific value of F (iterations)

4) Problem: can we justify the given value of internal friction?
Danger of non-conservative error! Good for structurally-
controlled slides in rock

Limit Equilibrium Methods, Summary 1

Method Type Vertical Horizontal | Moment Slices
Force Force Equilibrium
Equilibrium | Equilibrium
Bishop Simplified Yes No Yes Vertical
Janbu Simplified Yes Yes No Vertical
Spencer Rigorous Yes Yes Yes Vertical
Morgenstern- | Rigorous Yes Yes Yes Vertical
Price
Sarma Rigorous Yes Yes Yes Vertical
or
Inclined

20




Limit Equilibrium Methods, Summary 2

Method Type Advantages Disadvantages
Bishop Simp"ﬁed -very efficient -conservative with cases involving internal
-accurate for circular surfaces and | distortion
some non-circular (with Fredlund- -can be incorrect with external horizontal
Krahn modification) loads (including earthquake loads)
Janbu Simplified -very efficient -usually more conservative than other
-good for shallow slides methods
-horizontal external loads are OK -requires correction factor
(includes horizontal force
equilibrium)
Spencer Rigorous -any geometry and loads -less efficient, may not converge
-often more conservative than MP
Morgenstern Rigorous -any geometry and loads -less efficient, may not converge
-Price -can simulate internal shearing -choice of interslice function required
-often cited as a benchmark
Sarma Rigorous - good for structured slides (esp. -less efficient, may not converge
rock) -the assumption of fully mobilized internal
friction could lead to incorrect (non-
conservative) results, if not justified (e.g.
in rotational slides)
21
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Grid search

¥ ihe C: Akt oL W L sl Vot . Liamples e ammple | .C1W

T VeWNE T Z. s

Sy o Fachrs o Tl

[ ot G e |

23

Compound sliding surface (3D)

Weak surface
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Specified non-circular sliding surface

Toe
submergence

~
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Pore pressure conditions

F
ki
=
—]

u:th u:hwyw u=hwyw+§hf7/f
r,= pore pressure ratio
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Strength reduction method

FLAC: “Fast Lagrangian Analysis of Continua”

[0 =]

2nd strength
otk | Bud] satis Pt | - reduction
= & E| i
JJ—I e F c 1 “failure”
= g strength
1= reduction
@
(2]
o
[
2
(]
Calculation steps (time)
Strength reduction: Every strength reduction increases

displacements. Start with F=1, apply
successively higher reduction in cycles,
until “failure” occurs.

cm0b=C/FI (pmob = (P/F
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