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Slope stability analysis
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Unit of stress:
1 kilopascal kPa

= 1 kN/m2

(Kilo Newtons per square 
meter)

1,000N

Slightly above-average 
American male
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Unit weights of materials (per m3)
Water, γw = gρw = 9.81 kN/m3

Solid rock, γs = 26.0 kN/m3

Soil-made up of solid grains and pores

Dry soil, idealized:  
γd = γsVs/(Vs+Vv) = γs(1-n) = 15-20 kN/m3

Saturated soil:
γsat = (γsVs+ γsVs)/(Vs+Vv) =20-23 kN/m3

Vs= volume solids 
Vv= volume voids
Porosity:
n=Vv/(Vv+Vs)

air
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Fig. 1
Slope cross-section

Fig. 2
Isolate a column

Fig. 3
Force polygon

Zwcosβ

Flow lines
Equipotential lines

Fig. 4
Groundwater pressure

Infinite slope equation
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γw = unit weight of water (9.81 kN/m3)

γd = dry unit weight of soil (15-20 kN/m3)

γsat = saturated unit weight of soil (20-23 kN/m3)

Note:  the soil column is assumed 
to be 1m wide perpendicular to paper
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Assume no cohesion (c=0) and full saturation, zd = 0:
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Assume no cohesion (c=0) and a dry slope, zw = 0:

F =
tan
tan

φ
β

Conclusion: a dry cohesionless slope will be at the point of 
failure when β=φ ("angle of repose"). However, a saturated 
slope with parallel seepage will be about half as steep.
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Role of cohesion:
Assume fully saturated 
slope, parallel seepage
z = zw= 1.5 m
φ = 32º

F
c z z z

z z
d d sat w w w

d d sat w

=
+ + −

+
' ( ) cos tan

( ) sin
γ γ γ β φ

γ γ β

Solve equation to find c’ when 
F=1.0 (at failure)

Conclusion:
Slopes in mountainous 
regions require cohesion
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Undrained (short term) slope failure in clay

•φ’ = 0  
•Su instead of c’
•Slope fully saturated (by capillary action) , z = zw
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Undrained failures in clay 
tend to be rotational

sand

clay
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Shallow landslide susceptibility

Program LISA (US Forest Service):  
apply Infinite Slope Equation on an 
areal basis, in a probabilistic 
manner, map “probability of 
failure” (or Factor of Safety)

(Hammond et al., 1992)
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Influence of logging on slope stability

Root 
cohesion
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Subjective slope stability mapping

(J. Ryder, Vancouver, 1998)
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Deep-seated landslides: Method of Slices

General method:

1) Work out the equilibrium of each slice

2) Calculate the equilibrium of the slice assembly
3) Results depend on assumptions regarding the 

interslice forces E and X
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Available equations

XTNW ∇++= ββ sincos
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0cossin =−∑∑ ββ TN

0=−− ∑∑∑ TNw TrNrWr

1) Vertical equilibrium of a single slice (n equations)

2) Mohr-Coulomb strength (n equations)

3)  Horizontal force equilibrium for the slice assembly (1 equation)

4) Moment equilibrium for the slice assembly
(1 equation)

“Mobilized strength”

Interslice forces cancel out 
in these equations

r’s are radii of rotation
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Bishop’s Simplified Method:  
Fredlund Krahn (1978) Modification for Non-circular surfaces

N

rN

Add moment of the normal forces
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Possible solutions
For n slices, we have the following unknowns:

n N forces + n T forces +  n ∆X + n ∆E +1F =4n+1 unknowns

Bishop’s simplified method:  
1)  assume ∆X = 0 (no shear between slices)

2) use only Equations 1,2 and 4 (neglect horizontal force 
equilibrium)→ ∆E not needed, problem determinate

3) Good for circular sliding surfaces, conservative for others

4) Not good if large horizontal external forces involved
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More solutionsJanbu simplified method:  
1)  assume ∆X = 0 (no shear between slices)

2) use only Equations 1,2 and 3 (neglect moment equilibrium)

3) Good for shallow sliding surfaces, tends to be more conservative
than Bishop (correction needed)

Spencer’s method:  
1)  assume ∆X/∆E = constant (constant interslice friction)

2) Must add another equation (horizontal force equilibrium on each 
slice).  Use all five equations (“rigorous solution”)

3) Requires iterative solution, may not converge

Morgenstern-Price method:  
1)  assume ∆X/∆E varies according to a prescribed function 

(“rigorous solution”)

2) Requires iterative solution, may not converge
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Simplified and rigorous method comparison
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Bishop:    F = 1.00
Spencer:  F = 1.22
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Bishop:    F = 1.00
Spencer:  F = 1.03

→ Simplified method OK, if 
slide head stronger than toe 
(classic compound slide) not 
good if the opposite  
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Sarma method
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Force polygon

1) Divide sliding body into blocks

2) Assume that a constant friction angle, φi/F will be mobilized on 
all block interfaces

3) Solve graphically from first block to last.  Will only work out for 
one specific value of F (iterations)

4) Problem:  can we justify the given value of internal friction?  
Danger of non-conservative error! Good for structurally-
controlled slides in rock
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Limit Equilibrium Methods, Summary 1
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Limit Equilibrium Methods, Summary 2

-less efficient, may not converge
-the assumption of fully mobilized internal 
friction could lead to incorrect (non-
conservative) results, if not justified (e.g. 
in rotational slides)

- good for structured slides (esp. 
rock)

RigorousSarma

-less efficient, may not converge
-choice of interslice function required

-any geometry and loads
-can simulate internal shearing
-often cited as a benchmark

RigorousMorgenstern
-Price

-less efficient, may not converge
-often more conservative than MP

-any geometry and loadsRigorousSpencer

-usually more conservative than other 
methods
-requires correction factor

-very efficient
-good for shallow slides 
-horizontal external loads are OK 
(includes horizontal force 
equilibrium)

SimplifiedJanbu

-conservative with cases involving internal 
distortion
-can be incorrect with external horizontal 
loads (including earthquake loads)

-very efficient
-accurate for circular surfaces and 
some non-circular (with Fredlund-
Krahn modification)

SimplifiedBishop

DisadvantagesAdvantagesTypeMethod
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Search for the critical sliding surface

Automatic 
“Simplex”
search
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Grid search
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Compound sliding surface (3D)

Weak surface
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Specified non-circular sliding surface

Toe 
submergence
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Pore pressure conditions

ffww hBhu γγ +=wwhu γ=urhu γ=

fill

ru= pore pressure ratio
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Strength reduction method

Calculation steps (time)

D
is

pl
ac

em
en

t 1st

strength 
reduction

2nd strength 
reduction

“failure”

Strength reduction:
cmob=c/F   φmob = φ/F

Every strength reduction increases 
displacements.  Start with F=1, apply 
successively higher reduction in cycles, 
until “failure” occurs.

FLAC: “Fast Lagrangian Analysis of Continua”


